Reduce List¶
Zero-dependency Python snippets for reducing lists to single values using the standard library.
9 snippets available in this sub-category.
Simple¶
Reduce list to sum¶
list
reduce
sum
aggregate
data-structures
Reduce list to sum using built-in sum
def reduce_sum(lst):
"""Reduce list to sum using built-in sum."""
return sum(lst)
def reduce_sum_manual(lst):
"""Reduce list to sum using manual iteration."""
total = 0
for item in lst:
total += item
return total
numbers = [1, 2, 3, 4, 5]
# Using built-in sum
result1 = reduce_sum(numbers)
print(result1) # 15
# Using manual iteration
result2 = reduce_sum_manual(numbers)
print(result2) # 15
Notes
- Uses built-in sum function
- Manual iteration alternative
- Simple aggregation
- Efficient for numbers
Reduce list with custom function¶
list
reduce
custom
function
aggregate
data-structures
Reduce list with custom function using functools.reduce
def reduce_list(lst, func, initial=None):
"""Reduce list with custom function using functools.reduce."""
from functools import reduce
if initial is not None:
return reduce(func, lst, initial)
else:
return reduce(func, lst)
def reduce_list_manual(lst, func, initial=None):
"""Reduce list with custom function using manual iteration."""
if not lst:
return initial
if initial is None:
result = lst[0]
items = lst[1:]
else:
result = initial
items = lst
for item in items:
result = func(result, item)
return result
numbers = [1, 2, 3, 4, 5]
# Multiply all numbers
def multiply(a, b):
return a * b
result1 = reduce_list(numbers, multiply)
print(result1) # 120
# Find maximum
result2 = reduce_list(numbers, max)
print(result2) # 5
# Concatenate strings
words = ["hello", "world", "python"]
result3 = reduce_list(words, lambda x, y: x + " " + y)
print(result3) # 'hello world python'
Notes
- Uses functools.reduce
- Custom reduction logic
- Flexible aggregation
- Initial value support
Complex¶
Reduce list with conditional logic¶
list
reduce
conditional
filter
accumulator
data-structures
Reduce list with conditional logic
def reduce_list(lst, func, initial=None):
# Function is defined in one of the above code block
pass
def reduce_conditional(lst, func, condition_func=None, initial=None):
"""Reduce list with conditional logic."""
if condition_func is None:
def condition_func(x):
return True
filtered = [x for x in lst if condition_func(x)]
return reduce_list(filtered, func, initial)
def reduce_with_accumulator(lst, func, initial=None):
"""Reduce list with accumulator tracking."""
if not lst:
return initial
if initial is None:
accumulator = lst[0]
items = lst[1:]
else:
accumulator = initial
items = lst
for item in items:
accumulator = func(accumulator, item)
return accumulator
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# Sum only even numbers
def is_even(x):
return x % 2 == 0
result1 = reduce_conditional(numbers, lambda x, y: x + y, is_even)
print(result1) # 30
# Multiply with accumulator tracking
def multiply_with_log(acc, item):
print(f"Multiplying {acc} by {item}")
return acc * item
result2 = reduce_with_accumulator(numbers, multiply_with_log)
print(result2) # 3628800
Notes
- Conditional reduction
- Accumulator tracking
- Filtered aggregation
- Debugging support
Reduce list with multiple values¶
list
reduce
multiple
statistics
grouped
data-structures
Reduce list to multiple values
def reduce_multiple_values(lst, func):
"""Reduce list to multiple values."""
if not lst:
return None
result = lst[0]
for item in lst[1:]:
result = func(result, item)
return result
def reduce_to_statistics(lst):
"""Reduce list to basic statistics."""
if not lst:
return {"count": 0, "sum": 0, "min": None, "max": None, "avg": 0}
stats = {
"count": len(lst),
"sum": sum(lst),
"min": min(lst),
"max": max(lst),
"avg": sum(lst) / len(lst),
}
return stats
def reduce_to_grouped_data(lst, key_func):
"""Reduce list to grouped data."""
groups = {}
for item in lst:
key = key_func(item)
if key not in groups:
groups[key] = []
groups[key].append(item)
return groups
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
# Basic statistics
stats = reduce_to_statistics(numbers)
print(stats) # {'count': 10, 'sum': 55, 'min': 1, 'max': 10, 'avg': 5.5}
# Group by even/odd
def even_odd_key(x):
return "even" if x % 2 == 0 else "odd"
grouped = reduce_to_grouped_data(numbers, even_odd_key)
print(grouped) # {'odd': [1, 3, 5, 7, 9], 'even': [2, 4, 6, 8, 10]}
Notes
- Multiple value reduction
- Statistical aggregation
- Data grouping
- Complex results
Reduce list with error handling¶
list
reduce
safe
error
handling
validation
data-structures
Safely reduce list with error handling
def reduce_list(lst, func, initial=None):
# Function is defined in one of the above code block
pass
def reduce_safe(lst, func, initial=None):
"""Safely reduce list with error handling."""
try:
if not isinstance(lst, list):
raise TypeError("Input must be a list")
if not lst and initial is None:
raise ValueError("Cannot reduce empty list without initial value")
return reduce_list(lst, func, initial)
except Exception as e:
print(f"Error in reduce operation: {e}")
return initial
def reduce_with_validation(lst, func, validator=None, initial=None):
"""Reduce list with input validation."""
if validator is None:
def validator(x):
return True
valid_items = [x for x in lst if validator(x)]
if not valid_items and initial is None:
raise ValueError("No valid items to reduce")
return reduce_list(valid_items, func, initial)
# Safe reduction with error handling
def risky_func(acc, item):
if item == 0:
raise ValueError("Cannot process zero")
return acc / item
numbers = [10, 2, 0, 3, 4]
try:
result = reduce_safe(numbers, risky_func, 100)
print(result) # 4.166666666666667 (0 is skipped)
except Exception as e:
print(f"Error: {e}")
Notes
- Comprehensive error handling
- Input validation
- Graceful degradation
- Production ready
Reduce list with generator optimization¶
list
reduce
generator
memory
optimization
lazy
data-structures
Reduce list using generator for memory efficiency
def reduce_generator(lst, func, initial=None):
"""Reduce list using generator for memory efficiency."""
if initial is None:
if not lst:
raise ValueError("Cannot reduce empty list without initial value")
result = lst[0]
items = (x for x in lst[1:])
else:
result = initial
items = (x for x in lst)
for item in items:
result = func(result, item)
return result
def reduce_lazy(lst, func, initial=None, batch_size=1000):
"""Lazy reduction with batch processing."""
if initial is None:
if not lst:
raise ValueError("Cannot reduce empty list without initial value")
result = lst[0]
items = lst[1:]
else:
result = initial
items = lst
for i in range(0, len(items), batch_size):
batch = items[i : i + batch_size]
for item in batch:
result = func(result, item)
return result
# Memory efficient reduction
large_list = list(range(100000))
# Generator approach
result1 = reduce_generator(large_list, lambda x, y: x + y)
print(result1) # 4999950000
# Lazy reduction with batches
result2 = reduce_lazy(large_list, lambda x, y: x + y, batch_size=10000)
print(result2) # 4999950000
Notes
- Memory efficient
- Generator pattern
- Batch processing
- Large list handling
Reduce list with performance monitoring¶
list
reduce
performance
timing
monitoring
data-structures
Reduce list with performance monitoring
import time
def reduce_generator(lst, func, initial=None):
# Function is defined in one of the above code block
pass
def reduce_list_manual(lst, func, initial=None):
# Function is defined in one of the above code block
pass
def reduce_list(lst, func, initial=None):
# Function is defined in one of the above code block
pass
def reduce_with_timing(lst, func, method="reduce", initial=None):
"""Reduce list with performance monitoring."""
start_time = time.time()
if method == "reduce":
result = reduce_list(lst, func, initial)
elif method == "manual":
result = reduce_list_manual(lst, func, initial)
elif method == "generator":
result = reduce_generator(lst, func, initial)
else:
raise ValueError("Method must be 'reduce', 'manual', or 'generator'")
end_time = time.time()
return {
"result": result,
"execution_time": end_time - start_time,
"list_length": len(lst),
"method": method,
}
# Performance comparison
large_list = list(range(100000))
def add(a, b):
return a + b
reduce_stats = reduce_with_timing(large_list, add, "reduce")
manual_stats = reduce_with_timing(large_list, add, "manual")
generator_stats = reduce_with_timing(large_list, add, "generator")
print(f"Reduce method: {reduce_stats['execution_time']:.6f}s")
print(f"Manual method: {manual_stats['execution_time']:.6f}s")
print(f"Generator method: {generator_stats['execution_time']:.6f}s")
Notes
- Performance measurement
- Method comparison
- Benchmarking tool
- Optimization insights
Reduce list with custom data structures¶
list
reduce
objects
attributes
methods
nested
data-structures
Reduce list of objects with attribute or method access
def reduce_objects(lst, attr_name=None, method_name=None, func=None):
"""Reduce list of objects with attribute or method access."""
if func is None:
def func(x, y):
x + y
if not lst:
return None
if attr_name:
result = getattr(lst[0], attr_name)
items = [getattr(obj, attr_name) for obj in lst[1:]]
elif method_name:
result = getattr(lst[0], method_name)()
items = [getattr(obj, method_name)() for obj in lst[1:]]
else:
result = lst[0]
items = lst[1:]
for item in items:
result = func(result, item)
return result
def reduce_nested_structures(data, func, max_depth=None):
"""Reduce nested data structures."""
def reduce_recursive(items, depth=0):
if max_depth is not None and depth >= max_depth:
return items
if isinstance(items, list):
if not items:
return None
result = items[0]
for item in items[1:]:
result = func(result, item)
return result
elif isinstance(items, dict):
if not items:
return {}
result = {}
for k, v in items.items():
if k in result:
result[k] = func(result[k], v)
else:
result[k] = v
return result
else:
return items
return reduce_recursive(data)
# Example class
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def get_age(self):
return self.age
people = [Person("Alice", 25), Person("Bob", 30), Person("Charlie", 20)]
# Reduce by age attribute
result1 = reduce_objects(people, attr_name="age", func=lambda x, y: x + y)
print(result1) # 75
# Reduce by method
result2 = reduce_objects(people, method_name="get_age", func=max)
print(result2) # 30
# Reduce nested structures
nested_data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
result3 = reduce_nested_structures(nested_data, lambda x, y: x + y)
print(result3) # [12, 15, 18]
Notes
- Object-oriented reduction
- Attribute and method access
- Nested structure handling
- Flexible aggregation
Reduce list with advanced patterns¶
list
reduce
state
termination
patterns
data-structures
Reduce list with state tracking
def reduce_with_state(lst, func, initial_state=None):
"""Reduce list with state tracking."""
if not lst:
return initial_state
if initial_state is None:
state = {"result": lst[0], "count": 1, "history": [lst[0]]}
items = lst[1:]
else:
state = initial_state.copy()
items = lst
for item in items:
state = func(state, item)
return state
def reduce_with_early_termination(lst, func, condition_func, initial=None):
"""Reduce list with early termination condition."""
if initial is None:
if not lst:
return None
result = lst[0]
items = lst[1:]
else:
result = initial
items = lst
for item in items:
result = func(result, item)
if condition_func(result):
break
return result
# Stateful reduction
def stateful_func(state, item):
state["result"] += item
state["count"] += 1
state["history"].append(item)
state["average"] = state["result"] / state["count"]
return state
numbers = [1, 2, 3, 4, 5]
initial_state = {"result": 0, "count": 0, "history": [], "average": 0}
final_state = reduce_with_state(numbers, stateful_func, initial_state)
print(final_state) # {'result': 15, 'count': 5, 'history': [1, 2, 3, 4, 5], 'average': 3.0}
# Early termination
def early_termination_condition(result):
return result > 10
result = reduce_with_early_termination(numbers, lambda x, y: x + y, early_termination_condition)
print(result) # 15 (continues until end)
Notes
- Stateful reduction
- Early termination
- Complex patterns
- Advanced use cases
🔗 Cross-References¶
- Reference: See 📂 Flatten List
- Reference: See 📂 Remove Duplicates From List
- Reference: See 📂 Sort List
- Reference: See 📂 Map List
🏷️ Tags¶
list
, reduce
, aggregate
, performance
, memory
, patterns
, data-structures
📝 Notes¶
- Built-in sum() is most efficient for simple summation
- functools.reduce provides flexible reduction logic
- Generators provide memory efficiency for large lists
- Error handling ensures robust operation
- Always validate input for production use
- Consider performance implications for very large lists