Zip Lists¶
Zero-dependency Python snippets for zipping multiple lists using the standard library.
10 snippets available in this sub-category.
Simple¶
Zip two lists¶
list
zip
combine
pairs
data-structures
Zip two lists together
def zip_lists(list1, list2):
"""Zip two lists together."""
return list(zip(list1, list2))
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
result = zip_lists(names, ages)
print(result) # [('Alice', 25), ('Bob', 30), ('Charlie', 35)]
Notes
- Uses built-in zip function
- Creates tuples of paired elements
- Stops at shortest list length
- Simple and efficient
Zip multiple lists¶
list
zip
multiple
combine
data-structures
Zip multiple lists together
def zip_multiple_lists(*lists):
"""Zip multiple lists together."""
return list(zip(*lists))
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
cities = ["NYC", "LA", "Chicago"]
result = zip_multiple_lists(names, ages, cities)
print(result) # [('Alice', 25, 'NYC'), ('Bob', 30, 'LA'), ('Charlie', 35, 'Chicago')]
Notes
- Variable number of lists
- Uses unpacking operator
- Flexible input
- Handles any number of lists
Complex¶
Zip lists with different lengths¶
list
zip
different
lengths
fill
data-structures
Zip lists with different lengths using fill value
def zip_lists_different_lengths(*lists, fill_value=None):
"""Zip lists with different lengths using fill value."""
max_length = max(len(lst) for lst in lists)
padded_lists = []
for lst in lists:
# Pad shorter lists with fill value
padded = lst + [fill_value] * (max_length - len(lst))
padded_lists.append(padded)
return list(zip(*padded_lists))
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30]
cities = ["NYC", "LA", "Chicago", "Boston"]
result = zip_lists_different_lengths(names, ages, cities, fill_value="N/A")
print(
result
) # [('Alice', 25, 'NYC'), ('Bob', 30, 'LA'), ('Charlie', 'N/A', 'Chicago'), ('N/A', 'N/A', 'Boston')]
Notes
- Handles unequal lengths
- Configurable fill value
- Pads shorter lists
- Useful for data alignment
Zip lists with custom pairing function¶
list
zip
custom
function
pairing
data-structures
Zip lists with custom pairing function
def zip_lists_custom(*lists, pair_func=None):
"""Zip lists with custom pairing function."""
if pair_func is None:
def pair_func(*args):
return args
zipped = zip(*lists)
return [pair_func(*pair) for pair in zipped]
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
# Custom pairing: create dictionary
def create_person_dict(name, age):
return {"name": name, "age": age}
result = zip_lists_custom(names, ages, pair_func=create_person_dict)
print(
result
) # [{'name': 'Alice', 'age': 25}, {'name': 'Bob', 'age': 30}, {'name': 'Charlie', 'age': 35}]
# Custom pairing: create formatted string
def format_person(name, age):
return f"{name} is {age} years old"
result2 = zip_lists_custom(names, ages, pair_func=format_person)
print(result2) # ['Alice is 25 years old', 'Bob is 30 years old', 'Charlie is 35 years old']
Notes
- Flexible pairing logic
- Custom data structures
- Formatted output
- Advanced use cases
Zip lists with condition¶
list
zip
conditional
filter
data-structures
Zip lists with conditional filtering
def zip_lists_conditional(*lists, condition_func=None):
"""Zip lists with conditional filtering."""
if condition_func is None:
def condition_func(*args):
True
zipped = zip(*lists)
return [pair for pair in zipped if condition_func(*pair)]
names = ["Alice", "Bob", "Charlie", "David"]
ages = [25, 30, 35, 20]
cities = ["NYC", "LA", "Chicago", "Boston"]
# Filter by age > 25
def age_filter(name, age, city):
return age > 25
result = zip_lists_conditional(names, ages, cities, condition_func=age_filter)
print(result) # [('Bob', 30, 'LA'), ('Charlie', 35, 'Chicago')]
# Filter by city starting with 'C'
def city_filter(name, age, city):
return city.startswith("C")
result2 = zip_lists_conditional(names, ages, cities, condition_func=city_filter)
print(result2) # [('Charlie', 35, 'Chicago')]
Notes
- Conditional pairing
- Flexible filtering
- Multiple criteria
- Data filtering
Zip lists with index¶
list
zip
index
enumerate
data-structures
Zip lists with index information
def zip_lists_with_index(*lists):
"""Zip lists with their indices."""
return list(enumerate(zip(*lists)))
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
result = zip_lists_with_index(names, ages)
print(result) # [(0, ('Alice', 25)), (1, ('Bob', 30)), (2, ('Charlie', 35))]
# Alternative: include index in each tuple
def zip_lists_with_index_inline(*lists):
"""Zip lists with index included in each tuple."""
return [(i, *pair) for i, pair in enumerate(zip(*lists))]
result2 = zip_lists_with_index_inline(names, ages)
print(result2) # [(0, 'Alice', 25), (1, 'Bob', 30), (2, 'Charlie', 35)]
Notes
- Includes position information
- Useful for tracking
- Two indexing styles
- Position-aware processing
Zip lists with generator¶
list
zip
generator
memory
optimization
data-structures
Zip lists using generator
def zip_lists_generator(*lists):
"""Zip lists using generator for memory efficiency."""
return zip(*lists)
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
cities = ["NYC", "LA", "Chicago"]
# Memory efficient iteration
for name, age, city in zip_lists_generator(names, ages, cities):
print(f"{name} ({age}) from {city}")
# Convert to list if needed
result = list(zip_lists_generator(names, ages, cities))
print(result) # [('Alice', 25, 'NYC'), ('Bob', 30, 'LA'), ('Charlie', 35, 'Chicago')]
Notes
- Memory efficient
- Lazy evaluation
- Suitable for large lists
- Generator pattern
Zip lists with error handling¶
list
zip
safe
error
handling
data-structures
Safely zip lists with error handling
def zip_lists_different_lengths(*lists, fill_value=None):
# Function is defined in one of the above code block
pass
def zip_lists_safe(*lists, fill_value=None):
"""Safely zip lists with error handling."""
try:
if not lists:
return []
# Validate all inputs are lists
for i, lst in enumerate(lists):
if not isinstance(lst, list):
raise TypeError(f"Argument {i} must be a list, got {type(lst).__name__}")
if fill_value is not None:
return zip_lists_different_lengths(*lists, fill_value=fill_value)
else:
return list(zip(*lists))
except Exception as e:
print(f"Error zipping lists: {e}")
return [] # Return empty list on error
# Safe zipping with error handling
try:
result = zip_lists_safe(["Alice", "Bob"], [25, 30], fill_value="N/A")
print(result) # [('Alice', 25), ('Bob', 30)]
except Exception as e:
print(f"Error: {e}")
Notes
- Comprehensive error handling
- Type validation
- Graceful degradation
- Production ready
Zip lists with performance monitoring¶
list
zip
performance
timing
monitoring
data-structures
Zip lists with performance monitoring
import time
def zip_lists_generator(*lists):
# Function is defined in one of the above code block
pass
def zip_lists_different_lengths(*lists, fill_value=None):
# Function is defined in one of the above code block
pass
def zip_lists_with_timing(*lists, method="standard"):
"""Zip lists with performance monitoring."""
start_time = time.time()
if method == "standard":
result = list(zip(*lists))
elif method == "generator":
result = list(zip_lists_generator(*lists))
elif method == "fill_value":
result = zip_lists_different_lengths(*lists, fill_value=None)
else:
raise ValueError("Method must be 'standard', 'generator', or 'fill_value'")
end_time = time.time()
return {
"result": result,
"execution_time": end_time - start_time,
"num_lists": len(lists),
"total_elements": sum(len(lst) for lst in lists),
"method": method,
}
# Performance comparison
large_list1 = list(range(10000))
large_list2 = list(range(10000))
large_list3 = list(range(10000))
std_stats = zip_lists_with_timing(large_list1, large_list2, large_list3, method="standard")
gen_stats = zip_lists_with_timing(large_list1, large_list2, large_list3, method="generator")
print(f"Standard method: {std_stats['execution_time']:.6f}s")
print(f"Generator method: {gen_stats['execution_time']:.6f}s")
Notes
- Performance measurement
- Method comparison
- Benchmarking tool
- Optimization insights
Zip lists with custom aggregation¶
list
zip
aggregate
function
custom
data-structures
Zip lists with custom aggregation
def zip_lists_aggregate(*lists, aggregate_func=None):
"""Zip lists with custom aggregation function."""
if aggregate_func is None:
def aggregate_func(*args):
return args
zipped = zip(*lists)
aggregated = []
for pair in zipped:
result = aggregate_func(*pair)
aggregated.append(result)
return aggregated
numbers1 = [1, 2, 3, 4]
numbers2 = [5, 6, 7, 8]
numbers3 = [9, 10, 11, 12]
# Sum aggregation
def sum_aggregate(a, b, c):
return a + b + c
result = zip_lists_aggregate(numbers1, numbers2, numbers3, aggregate_func=sum_aggregate)
print(result) # [15, 18, 21, 24]
# Average aggregation
def avg_aggregate(a, b, c):
return (a + b + c) / 3
result2 = zip_lists_aggregate(numbers1, numbers2, numbers3, aggregate_func=avg_aggregate)
print(result2) # [5.0, 6.0, 7.0, 8.0]
Notes
- Custom aggregation logic
- Mathematical operations
- Statistical calculations
- Data processing
🔗 Cross-References¶
- Reference: See 📂 Flatten List
- Reference: See 📂 Remove Duplicates From List
- Reference: See 📂 Sort List
- Reference: See 📂 Rotate List
🏷️ Tags¶
list
, zip
, combine
, generator
, performance
, aggregation
, data-structures
📝 Notes¶
- Built-in zip function is most efficient for standard use cases
- Generators provide memory efficiency for large lists
- Custom pairing functions enable complex data transformations
- Fill values handle lists of different lengths
- Conditional zipping is useful for data filtering
- Consider performance implications for very large lists